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THE STABILITY OF COUETTE-TAYLOR ELECTROHYDRODYNAMIC FLOW+' 

A.P. KURYACHII 

In the context of linear stability theory, an investigation is 
presented of the effect of electrohydrodynamic (EHD) interaction on the 
value of the critical Taylor number for loss of stability in a flow of a 
unipolarly charged fluid between rotating concentric cylinders in the 
presence of a radial electric field. The stabilizing effect of EHD 
interaction is demonstrated. 

Previous studies /l/ have considered EHD instability of the 
equilibrium of a weakly conducting fluid between cylindrical electrodes, 
subjected to an injection of charge by one of the electrodes. Analogous 
problems have been solved for spherical electrodes /2, 31. This paper 
investigates the possible effect of EHD interaction on the stability of 
a flow with curvilinear streamlines. 

1. We consider the flow of a viscous incompressible unipolarly charged liquid between 
rotating concentric dielectric cylinders in the presence of a radial electric field. To fix 
our ideas we shall assume that the space charge density is positive. Attention will be 
confined to the case in which the outer cylinder is at rest. Let r*, 8, z* be cylindrical 
coordinates, RI* and R2* the radii of the inner and outer cylinders, respectively, and s1* 
the angular velocity of the inner cylinder. The asterisk indicates that the quantities in 
question are dimensional. 

If the 8 and z-components of the electric field vector vanish, it follows from the 
equations of electrohydrodynamics /4/ that the velocity field of the fundamental unperturbed 
mode is independent of the presence of space charge. It is described by /5/ 

u8* = V* (r*) = A*r* + B*ir* 

A*=---*$-+ B*=PR&+ 

The electrical parameters of the fundamental mode (space charge density and electrical 
field strength) are determined by means of Poisson's equation and the current continuity 
equation /4/. In the axisymmetric case, when aje*iae = 0, the latter reduces to the equation 
jr* = 0 (je* and j,* are the components of the current density vector). 

The boundary conditions for the electrical parameters are formulated as follows. The 
radial component of the electric field on the outer surface of the inner cylinder, E,*, is 
assumed given. In this axisymmetric case, owing to the absence of eddies, the other field 
component vanishes: Ee* s 0. A field with this configuration may be created by an axisym- 
metrically distributed charge in the region r* < R,*, e.g., by a uni‘formly charged metal 
cylinder with dielectrically coated outer surface t* = R,'. In that case the electric field, 
having only a radial component, may be determined at 
in the region r* <RI* 

T* = R,* from the charge distribution 
using Gauss's Theorem. The electric field in the space between the 

cylinders is determined by the value of E,* and the space charge in that region and is 
independent of the charge on the outer cylinder. 

Besides the boundary condition for the field, we also need a condition pertaining to the 
space charge density, which is given in this formulation of the problem in integral form as 
an expression for the electric current if per unit length due to charge transfer by the 
moving liquid. 

Thus, the space charge density and electric field in the flow region can be determined 
by solving the following problem: 

(r*E*)' = r*Q*le*, D*Q*'_b*E*Q* z 0 (1.2) 

E*(R,*) = E,*, 
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Here the prime denotes differentiation with respect to P, I:'* (r*) is the electric 
field, Q* (r*) the space charge density, F* the permittivity of the liquid, and h* and /P 
the ion mobility and diffusivity. The equation rot E* =~ (I, generally included in the 
system of equations of electrohydrodynamics /4/, is automatically satisfied here. 

Introducing non-dimensional quantities 

d* -. R,* - R,*. X0* 1 ‘/? (R,* + R,*), r* = R,” + d*.~ 

E* BD*,(b*d*), Q* = QD*e* (b*d*‘) 

(1.3) 

and using the expression for the velocity of the liquid (l.l), we derive from (1.2) the 
following problem determining the electrical parameters of the flow: 

(rk)’ = rQ, Q' _ E‘Q = o (IA) 

r (s) = J + l/2 * ( E (-- l/J = E, 
‘I2 

SL 1 ~_ 
r (1 - q)S 

r Qdx=I, --‘:. 1 

The prime denotes differentiation with respect to I. 
From (l-4), setting q(z) = r(.r) E (.z), we obtain the following equation: 

r$' - cpl - (p(p* = (J 

Integrating once, we obtain 

cp' = I(cp + 2)z + ClJi(2r) (1.5) 

This equation can be integrated once more, but the form of the solution will depend on 
the sign of the constant C,. If C, == a2, then integration of (1.5) using the boundary 
Condition (1.4) gives the solution 

E-=+tRX-+. Q m: + is;)” cos-2 X 

On the other hand, if C, = -az, we have 

E _ a - 2 + (a + 4 Czr” , Qz 2a2C,ra-” 

r (i - C*rQ) (I -C/)2 

C, = (p-+T 2--+q9&--+a”) 
2+n+q(Eo-----a) 

Finally, if c, = 0, 

The value of C, (or a) is determined from the second condition of (1.4), which can be 
written as 

2. The derive a system of equations and boundary conditions governing the evolution of 
small perturbations to the flow, we denote the perturbations to the r-,O-,z-components of 

the velocity by u*', v*‘, UP’, respectively. In addition , we let p*‘, q*‘, e,*‘, ee*‘, ez2’ denote 
the perturbations to pressure, space charge density and the field components, respectively. 

We shall confine our attention to perturbations of the Taylor vortex type, which are 
axisymmetric, periodic in z* and monotone in time /6/: 
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u*’ (r.* 
I I 

, z*, t*)= u* (r*) exp(a*t*)cos(a*z*) for u*', v*', p*', q*‘,e,* ,ee* 

w*’ (r* , z*, t*) = w* (r*) exp (o*t*)sin (a*z*) for w*', e,*' 

where (J* and a* are real numbers. The case of complex (J* (i.e. oscillatory 
perturbations) will not be considered. 

Boundary conditions: the velocity components are assumed to satisfy adherence 
conditions. The perturbations to the electrical parameters must be such that there is no 
current on the surface of either cylinder. In addition, the tangential component of the 
field must be continuous at the surface of the inner cylinder and the jump of the normal 
component must be equal to the space charge density. Since it is assumed that the field 
created by the charge distributed in the region r* < R,* is not perturbed, the tangential 
component of the field must vanish at r* = RI*. The space charge density may be related 
to the space charge density at the surface, and therefore the boundary condition for the 
normal component of the field at r* ==R,* will have the general form e,*'+ fi*q*’ = 0, where 

B' is a coefficient characterizing the adsorptive properties of the surface. In the sequel 
we shall assume that the dielectric surface of the cylinder does not adsorb surface charge, 
so that p* = 0. 

Substituting the above expressions for the perturbations into the electrohydrodynamic 
equations and omitting non-linear terms, we obtain a boundary-value problem describing the 
evolution of small perturbations of the type in question. Unlike the problem for the 
fundamental (unperturbed) mode, the equations for the electrical parameters are not separated 
from the "hydrodynamic part" of the problem - the hydrodynamic and electrical perturbations 
are interrelated. 

The boundary-value problem for small perturbations may be written 

L,*u* + a*w* = 0, p*v* (L*L,* - a*2 - 0*/v*) u* = 

L*p* - 2p*V*v*lr* - E*q* - Q*e * r 

v* (L*L,* - a*z - a*/~*) v* = 2A*u* 

afp* = -p*v* (,$*L* _ a*2 _ 0*/v*) w* _ Q*e,* 

a*q* = __E* (L,*L* _ a*2) e,*, D* (L,*L* _ a*2 _ 0*/D*) q* E 

b*E*L*q* + 2b*Q*q*k* + (be,* + u*) L*Q* 

a*e,* + L*e,* = 0, ee* = 0 

r* = RI*, u* = v* = w* = e,* _ e,* = (D*L* _ b*E*) q* = 0 

r* = R,*, u* = v* = w* = (D*L* _ b*E*) q* _ b*Q*e,* = 0 

(L* = dld.P, L,* = dldr* + i/r*) 

To transform to non-dimensional notation, we use (1.3) and the relations 

v*O*R l u*=u1 v* i+(l 
2A’d.a =-u-‘1, v* = vPR,+ 

a*= = 7’ cl*=%, ez*=f$-, V*=g(x)B*r* 

g(+)=~[~-~J~ E(Z)= l+,:;c:_,,z 

Omitting the equations of pressure, space charge density, the z-component of the 
velocity and the radial component of the field, and using Eqs.(l.l), we finally obtain the 
following system of ordinary differential equations and boundary conditions of tenth order: 

(LL,-aa2--u)(LL,-aa2)u= -2Tg(x)v+ 
2aq (1 + q)-’ J.-2NE (L,L - a2 - Q) e 

(2.1) 

(LL, - a2 - a) v = 24 

(L,L - a* - ho - 2Q) (L,L - a’) e - E (LL, - a2 + Q) Le = 

‘IsWE (1 + rl) q-5~ 

x = --‘i2, U=LU=V=e=Le=O 

(L + 1 - rl - E) L*e = 0 

x = l/z, u=Lu=v=O 
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ILL,/, - EL,/, - (Q i OIL) L f U’E] e 0 

(id didx, L, =: d;dx + Vr (z)) 

The function r(.r) is given by (1.4) and E(z) and 0 (x) solutions of Problem (1.4). 

3. The boundary-value Problem (2.1) can be solved by reduction to a Cauchy problem /7/. 
The solution is assumed to be a combination of four linearly independent solution, each 
satisfying the boundary conditions on the inner cylinder (summation from i _ 1 to i -4): 

u -- Aiui, I, _ A c. I I, e = A,ei (3.1) 

Of the ten functions u,, LU;, L’lQ, L3Ui, L’i, LQ. ei, Le,, L’q, L3q occurring here, only the 
following are assumed to be non-zero at x== -I,'*: 

Lc, ~~ 1, L”U, ~~ 1, f,%:, 7 1, PP, ~~ 1. L%,, Z-m E (-‘:J -t (II - l)‘q (2.2) 

Eqs.(2.1) constitute a system of ten first-order equations in the above functions, which 
can be integrated by the Runge-Kutta method from .r -I'* to J- I., for each indepen- 
dent solution, taking the corresponding initial Conditions (3.2) into account. At .z 'IS 
one obtains solutions of the form (3.1). The boundary Conditions (2.1) at r z- 1.'? _ yield a 
system of homogeneous linear algebraic equations in the four independent constants Ai occur- 

ring in (3.1). The determinant of this system is the characteristic function of the eigenvalue 
Problem (2.1). Fixing IJ and a one uses Newton's method to determine the eigenvalue of 
the Taylor number T which makes the characteristic function vanish. 

We will now study the effect of EHD interaction on the critical Taylor number I’, for 
loss of stability. To determine T, one takes u-0 and uses the above method to find 
the T values for a few equidistant values of a; T, and CL, are then determined by quadratic 
interpolation from three values. 

When solving the eigenvalue problem, the functions E(z) and Q (4 can be determined 
with the help of the above analytical expressions. However, some caution is necessary with 
regard to the sign of the constant c, in (1.5). For that reason, Eq.(1.5) should first be 
solved (before the eigenvalue problem), using the Runge-Kutta method with the sane integration 
step-length; this yields profiles of E(s), Q (4 which can then be used to solve Problem 
(2.1). 

4. The effect on stability of the space charge density and electric field distributions 
is of particular interest. These depend primarily on the parameters E, and I, and there- 
fore the parameters h and N in Problem (2.1), which characterize the liquid, were assumed 
constant and equal to unity in the computations reported below. The computations were also 
carried out for one value 11 -= 0.95. 

Fig.1 presents several parameters plotted against the electric current I: the constant 

L', in Eq.(1.5), the field strength E, on the outer cylinder, and the space charge density 
on the inner cylinder (QO) and outer cylinder (Qe) for fixed E,= 0. One observes that at 
E, 2 0 the space charge density increases monotonically from the inner to the outer cylinder. 
At E"<O, v (x) is not monotone until E,, has decreased to such an extent that F, 
becomes negative. 

The functions plotted in Fig.1 characterize the electrical parameters of the flow to 
some extent. Fig.2 presents results of a stability computation for EHD flow: the current 
Taylor number T, and the corresponding wave number a,. The dotted and dash-dotted lines 
represent T, = 3509.U and n, m= 3.1276, respectively, corresponding to Couette-Taylor flow 
without an impressed field. The data of Fig.2 indicate that at fixed E,= 0 an increase in 
the current (or total charge) between the cylinders first improves the stability of the flow. 
After T, reaches its maximum value, approximately at 1=8, a further increase in charge 
causes a quite sharp loss of stability (represented by decreasing T,), accompanied by an 
equally sharp increase in the wave number CL,. 

Fig.1 Fig.2 



Fig.3 represents the effect of the impressed electric field at the inner cylinder on 
the values of the same parameters as in Fig-l, at a fixed value I=S. 

Fig.3 

%2 
-B -P l3 r, 

Fig.4 

Fig.4 presents plots of T, and I+ against E. for the same value of I= 8. The 
largest T, value occurs at E,=O. An increase in the negative values of the impressed 
field E, first causes a drop in the critical Taylor number, which reaches a local minimum 
at a distribution of electrical parameters which is almost symmetrical about the midpoint of 
the gap between the cylinders, as is evident on comparing Figs.3 and 4. At this point Qa 

and QB are equal, as are the absolute magnitudes of the charge gradient dQ!dz = EQ about 
the cylinders. The minimum T, and the corresponding wave number are almost the same as 
their values for ordinary Couette-Taylor flow. 
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When E, increases further, the flow becomes more stable and one observes a second flat 
maximum in the plots of Tc and a, against Ear with a monotone charge distribution, 
increasing toward the inner cylinder. At positive values of the impressed field E,, an 
increase in which causes a sharp increase in charge density on the outer cylinder (Fig.31, 
there is a rapid decrease in stability with increasing wave number, similar to that observed 
when I is increased (Fig.2). 

We may conclude that, although the maximum increase in stability of Couette-Taylor flow 
due to EHD interaction is observed when E, = 0, at which time the space charge increases 
monotonically from the inner to the outer cylinder, further concentration of charge on the 
concave surface of the outer cylinder, whether due to an increase in the impressed field or 
to the current in the gap between the cylinders (or the total charge), causes a rapid decrease 
in the critical Taylor number (destabilization of the flow) and an increase in the perturbation 
wave number. On the other hand, if the charage increases monotonically from the outer to the 
inner cylinder, one observes an increase in stability. 
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